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Abstract— We deal with the problem of planning collision-
free trajectories for robots operating in a shared space. Given
the start and destination position for each of the robots, the task
is to find trajectories for all robots that reach their destinations
with minimum total cost such that the robots will not collide
when following the found trajectories. Our approach starts from
individually optimal trajectory for each robot, which are then
penalized for being in collision with other robots. The penalty
is gradually increased and the individual trajectories are
iteratively replanned to account for the increased penalty until
a collision-free solution is found. Using extensive experimental
evaluation, we find that such a penalty method constructs
trajectories with near-optimal cost on the instances where the
optimum is known and otherwise with 4-10 % lower cost than
the trajectories generated by prioritized planning and up to
40 % cheaper than trajectories generated by local collision
avoidance technique ORCA.

I. INTRODUCTION

An important problem in multi-robotics is the coordination
of trajectories of individual robots. That is, given n circular
robots, together with their starting and destination positions,
we are interested in finding a set of individual trajectories
π1, . . . , πn that do not collide with each other, i.e. ∀i,j∀t :
|πi(t)− πj(t)| > dsep, where dsep is the required separation
distance – usually the sum of radii of the two robots, while
at the same time the overall costs (e.g., sum of trajectory
lengths) is minimized.

It is known that path coordination of circular vehicles
among polygonal obstacles is NP-hard [4]. While the prob-
lem is relatively straightforward to formulate as a planning
problem in the Cartesian product of the state spaces of the
individual robots, the solutions are difficult to find using
standard search techniques because the joint state-space
grows exponentially with the number of robots.

Prioritized planning [2] is a heuristic approach based on
the idea of sequential planning for the individual robots
in the order of their priorities, where each robot considers
the higher-priority robots as moving obstacles and plans its
trajectory to avoid them. While fast, prioritized planning
is incomplete and often fails to find a solution even if
one exists. Futher, the resulting trajectories are typically
noticeably suboptimal.

The techniques of mathematical optimization such as the
penalty-based approach [3] have been also studied in the
context single-robot and multi-robot trajectory generation. In
particular, a distributed penalty-based method has been used
to solve the multi-robot rendezvous problem [1].
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We use similar distributed penalty-based approach to find
coordinated non-colliding trajectories for multiple robots and
propose the k-step penalty method that can be seen as a gen-
eralization of prioritized planning approach. The algorithm
performs a series of single-robot path planning queries in a
dynamic environment such that the trajectories that are too
close to trajectories of other robots are penalized. Starting
from trajectories that disregard collisions with other robots,
the collisions between robots’ trajectories are gradually being
penalized with increasing severity so that they are finally
forced out of collision as the penalties tend to infinity. Using
extensive experiments, we demonstrate that this heuristic
approach tends to generate near-optimal trajectories that are
of significantly lower cost than the trajectories generated by
prioritized planning and reactive techniques.

II. PENALTY-BASED METHOD

We propose a penalty-based approach that attempts to
mitigate the low success rate and low solution quality of
prioritized planning, but in the same time retain its tractabil-
ity. We combine the idea of decoupled planning as used
in prioritized planning with iterative increasing of penalty
assigned to each robot in collision.

The requirement on minimal separation between trajecto-
ries of a pair of robots i, j is modelled by a penalty function
assigning penalty to each part of the trajectory of robot i
that gets closer to the trajectory of robot j than the required
separation distance dsep. The penalty function has the form

Ωij(πi, πj) =

ˆ ∞
0

ωij(|πi(t)− πj(t)|) dt ,

where πi(t) is a trajectory of robot i and ωij(d) is a bump
function:

ωij(d) =

{
1
e−1 · e

− 1
1−(d/dsep)2

) for d < dsep

0 otherwise
.

Algorithm 1 exposes the k-step Penalty Method (PM)
algorithm that replans the trajectory of each robot exactly
k-times. The algorithm starts by finding a cost-optimal
trajectory for each robot using w = 0, i.e., while ignoring
interactions with other robots. Then, it gradually increases
the weight w and thus the penalties start to be taken into
account. After each increase of the weight coefficient, one
of the robots is selected and its trajectory is replanned to
account for the increased penalty. The trajectory is planned
by performing space-time search in time-extended roadmap
using A*. After the iterative phase finishes, the trajectories
of all robots are replanned for the last time with the weight
coefficient set to infinity. If the final set of trajectories is



Algorithm 1: k-step Penalty Method

1 Algorithm PM(k)
2 for i← 1 . . . n do πi ←Replan(i, 0)
3 for i← 1 . . . n(k − 2) do
4 r ← imod n(k − 2)
5 wi ← tan( i

n(k−2)+1 ·
π
2 )

6 πi ←Replan(i, wi)
7 for i← 1 . . . n do πi ←Replan(i,∞)
8 if ∀ij Ωij(πi, πj) = 0 then return 〈π1, . . . , πn〉
9 else report failure

10 Function Replan(r, w)
11 return trajectory π for robot r that minimizes

c(π) + w
∑

j 6=r
Ωrj(π, πj)

Scenario A Scenario B Scenario C

Fig. 1. Experimental environments

conflict-free, the algorithm returns the trajectories as a valid
solution, otherwise it reports failure.

III. EXPERIMENTAL EVALUATION

We compared the performance of the proposed k-step
penalty method (PM) against prioritized planning (PP), a
state-of-the-art optimal algorithm called operator decompo-
sition (OD) [5], and a reactive method ORCA [6] on a
range of randomly generated dense multi-robot path planning
instances in three synthetic environments shown in Figure 1.
We focused on dense collision situations in which all robots
are involved in a single conflict cluster. The runtime of
each algorithm was limited to 1 hour. The results of the
comparison are plotted in Figure 2. We can see that due to the
exponentially-growing state space, the optimal algorithm OD
was not able to solve the instances with more than 5 robots
within 1 hour limit, while PM scales even to instances with
more than 20 robots and in the same time generates high-
quality solution with relatively low runtime requirements.

IV. CONCLUSION

We have explored the applicability of penalty-based
method to improve success rate and the quality of returned
solution of prioritized planning. Our experimental results
show that with increasing number of iterations, the algorithm
constructs solutions with near-optimal cost (on instances
where the optimum was known). On the instances where the
optimum was not known, our method consistently provided
solutions that are 4-10 % cheaper than solutions provided by
prioritized planning and up to 40 % cheaper than the solu-
tions provided by a widely-used reactive technique ORCA.
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Fig. 2. Results. The plot shows: Success rate: the percentage of instances
successfully solved by PM(k = 3, 20, 10), PP, OD, and ORCA in each
scenario. CPU runtime: average CPU runtime to find a solution by
PM(k = 3, 20, 10) and PP. Suboptimality: average suboptimality of
solution generated by PM(k = 1, . . . , 100) and PP on instances where
optimum was known. Time out of goal: average difference in solution
quality generated by PM(k = 1, . . . , 100), PP, and ORCA on instances
with 10 robots in Scenario B.

In future, we plan to focus on the investigation of theoretical
properties of the method on our problem.
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